

HVAC (47.0201) T-Chart	DEPARTMENT OF EDUCATIO
Work with very large/small	numbers = Apply and extend the properties of exponents to solve problems with rational exponents
Program Task: Read and interpret technical da	ta. PA Core Standard: CC.2.1.HS.F.1 Description: Apply and extend the properties of exponents to solve problems with rational exponents.
Program Associated Vocabulary: KILO, MICRO, MEGA, MILLI, TERA	Math Associated Vocabulary: EXPONENT, INTEGER, STANDARD FORM
 Program Formulas and Procedures: HVAC technicians are required to work with ververy small numbers. Not only is it inconvenient a impractical to write these numbers out in long studigits, the opportunity for error is greatly increases so. At times, HVAC professionals use prefixes strenga-, or tera- to describe moderately large numprefixes such as milli- or micro- to describe modesmall numbers. In some cases, engineering specifications, which understood by the field technician, will reflect very and very small numbers using scientific notation Regardless of how the number is represented in the data and writing, the technician must be accurate proficient in interpreting and applying the values. 	y large and ind ings of ed in doing tch as kilo-, bers, or eratelyFormulas and Procedures: Scientific Notation: A number in the form $\mathbf{a} \times 10^{\mathbf{n}}$, where $1 \le \mathbf{a} < 10$ and \mathbf{n} is an integer. Example: 2.3×10^5 Not an example: $.23 \times 10^5$ Example: 2.3×10^5 Not an example: $.23 \times 10^5$ Expressing numbers in scientific notation from standard form:
 Some Examples of Scientific Notation in HVA One ampere of electrical current is define 6,241,509,629,152,650,000 electrons magiven point per second. A rough estimation number in scientific notation form is 6.2 1 micro amp = .000001 amps = 1 × 10 amps 1,200 tons of cooling = 14,400,000 btu/btu/h or 1.4 × 10⁷ 	 C: ned as oving past nate of this 24×10¹⁸. 6 or 1E-6 h = 1.4E+7 3. If the decimal place must move left, the exponent is positive. If the decimal place must move right, the exponent is negative. 4. Write the number in scientific notation. Example 1: Write 2,400,000 in scientific notation. 1. The decimal must go between the 2 and 4. 2.400000, so a = 2.4 2. The original decimal 2,400,000. had to move 6 places to the left, so n = 6
TermNumberSc.Not.D	efinition 3. The decimal moved left so $n = 6$

The answer is 2.4×10^6 or 2.4E+06.

Example 2: Write 0.00435 in scientific notation.

- 1. The decimal must go between the 4 and 3, so a = 4.35
- 2. The original decimal had to move 3 places so n = 3.
- 3. Since the decimal moved 3 places to the right, n = -3The answer is 4.35×10^{-3} or 4.35E-03.

Term	Number	Sc.Not.	Definition
Tera (T)	1,000,000,000,000	10 ¹²	Trillion
Giga (G)	1,000,000,000	10 ⁹	Billion
Mega(M)	1,000,000	10 ⁶	Million
Kilo (k)	1,000	10^{3}	Thousand
Hecto(h)	100	10^{2}	Hundred
Deca(da)	10	10 ¹	Ten
	1	10^{0}	One
Deci (d)	0.1	10-1	Tenth
Centi (c)	0.01	10 ⁻²	Hundredth
Milli (m)	0.001	10 ⁻³	Thousandth
Micro(µ)	0.000001	10-6	Millionth
Nano (n)	0.000000001	10-9	Billionth

HVAC (47.0201) T-Chart

Instructor's Script - Comparing and Contrasting

HVAC technicians need to simplify expressions in practical ways that may be expressed in scientific notation or through the use of convenient prefixes, such as milli, kilo, and micro.

Being able to write numbers in scientific notation allows us to multiply and divide very large numbers or very small numbers that our calculators would otherwise not be able to compute. For example:

 $\frac{(4.5 \times 10^8)(6.1 \times 10^{-5})}{3.5 \times 10^4} \quad \text{can be re-written as} \qquad \frac{(4.5 \times 6.1)(10^8 \times 10^{-5})}{3.5 \times 10^{-4}}$

Multiply the numbers in the first parenthesis. To multiply the numbers in the second parenthesis you add the exponents. Be careful with negative exponents (8 + (-5) = 3):

$$\frac{27.45 \times 10^3}{3.5 \times 10^{-4}}$$

To finish the division problem, divide 27.45 by 3.5. To divide the powers you subtract the exponents. Be careful with negatives. (3 - (-4) = 3 + 4 = 7)

Answer: 7.84×10^7

Common Mistakes Made By Students

Students will incorrectly place the decimal. Students forget that once the number is in scientific notation, the number in front of the decimal must be a single digit.

Students either move the decimal in the wrong direction or incorrectly identify the sign of the exponent, making it negative when it should be positive and vice-versa.

Students may forget to enter parenthesis into the calculator when simplifying expressions in scientific notation.

CTE Instructor's Extended Discussion

HVAC instructors should help their students become proficient in working with numbers in as many aspects as possible. The most proficient and successful technicians, engineers and HVAC business owners will be those who are comfortable working with and communicating using numbers and formulas.

Help your students to understand that there is more than one format for displaying scientific notation.

Examples:

 $3.16 \times 10^6 = 3.16E + 06$ $2.54 \times 10^{-9} = 2.54E - 09$

	Problems Occupational (Con	textual) Math Concepts	Solutions
1.	A hospital boiler has a maximum firing rate of 100 gallons per hour (gph) of #2 oil. Each gallon contains 140,000 British Thermal Units (btu's) of energy. How many btu's of heat energy are released if the burner operates on high fire for a full 8 hour shift? Show the btu value using scientific notation.		
2.	One ampere of electrical current is defined as $6,241,509,629,152,650,000$ electrons moving past a given point per second. A rough estimate of this number in scientific notation form is 6.24×10^{18} . If a fan motor amperage is measured at 10 amps, about how many electrons, per second, are flowing through the motor windings?		
3.	Flame rod circuits measure electrical current flowing through a flame. During normal operating conditions, the current will be between 3 and 5 micro-amps (3-5 millionths of an amp). How would that range be written in scientific notation?		
	Problems Related, Gen	eric Math Concepts	Solutions
4.	Light travels at a rate of 186,000 miles per second; how far will light travel in one day?		
5.	Express 9.3×10^{7} as a number in standard form (this is also the distance between the Sun and the Earth in miles).		
6.	Scientists estimate that there are 326,000,000,000,000,000 gallons of water on Earth. Express that number in scientific notation.		
	Problems PA Core Math Look Solutions		Solutions
7.	Express 3,345,000,000 in scientific notation.		
8.	Express 0.00045 in scientific notation.		
9.	Evaluate the following expression (write your answer in scientific notation): $(3.25 \times 10^{6})(4.2 \times 10^{-4})$ (2.5×10^{-3})		

HVAC (47.0201) T-Chart

	Problems Occupational (Contextual) Math Concepts Solutions	
1.	A hospital boiler has a maximum firing rate of 100 gallons per hour (gph) of #2 oil. Each gallon contains 140,000 British Thermal Units (btu's) of energy. How many btu's of heat energy are released if the burner operates on high fire for a full 8 hour shift? Show the btu value using scientific notation.	Total BTU's = btu/hour × hours of operation Total BTU's = 140,000 btu's × 100 × 8 Total BTU's = 112,000,000 btu's Total BTU's = 1.12E+08 btu's or 1.12×10^8 btu's
2.	One ampere of electrical current is defined as 6,241,509,629,152,650,000 electrons moving past a given point per second. A rough estimate of this number in scientific notation form is 6.24E+18. If a fan motor amperage is measured at 10 amps, about how many electrons, per second, are flowing through the motor windings?	10 amps = $(6.24E+18) \times 10$ 10 amps = $6.24E+19$ or 6.24×10^{19} electrons/second
3.	Flame rod circuits measure electrical current flowing through a flame. During normal operating conditions, the current will be between 3 and 5 micro-amps (3-5 millionths of an amp). How would that range be written in Scientific Notation?	3E-6 to 5E-06 amps or 3×10^{-6} to 5×10^{-6} amps
Problems Related, Generic Math Concepts Solutions		eric Math Concepts Solutions
4.	Light travels at a rate of 186,000 miles per second; how far will light travel in one day?	Miles = 186,000 mps x 60 sec. × 60 min. × 24 hrs. Miles = 16,070,400,000 Miles = $1.607E+10$ or Miles = 1.607×10^{10}
5.	Express 9.3×10^{7} as a number in standard form (this is also the distance between the Sun and the Earth in miles).	$9.3 \times 10^{7} = 93,000,000$
6.	Scientists estimate that there are 326,000,000,000,000,000 gallons of water on Earth. Express that number in Scientific Notation.	$326,000,000,000,000,000 = 3.26E+20 \text{ or } 3.26 \times 10^{20}$
	Problems PA Co	re Math Look Solutions
7.	Express 3,345,000,000 in scientific notation.	3.345×10^9 or $3.345E+09$
8.	Express 0.00045 in scientific notation.	4.5×10^{-4} or 4.5E-04
9.	Evaluate the following expression (write your answer in scientific notation): $\frac{(3.25 \times 10^{6})(4.2 \times 10^{-4})}{(2.5 \times 10^{-3})}$	5.46×10^5 or $5.46E+05$